Subtle differences in virus composition affect disinfection kinetics and mechanisms.
نویسندگان
چکیده
Viral disinfection kinetics have been studied in depth, but the molecular-level inactivation mechanisms are not understood. Consequently, it is difficult to predict the disinfection behavior of nonculturable viruses, even when related, culturable viruses are available. The objective of this work was to determine how small differences in the composition of the viral genome and proteins impact disinfection. To this end, we investigated the inactivation of three related bacteriophages (MS2, fr, and GA) by UV254, singlet oxygen ((1)O2), free chlorine (FC), and chlorine dioxide (ClO2). Genome damage was quantified by PCR, and protein damage was assessed by quantitative matrix-assisted laser desorption ionization (MALDI) mass spectrometry. ClO2 caused great variability in the inactivation kinetics between viruses and was the only treatment that did not induce genome damage. The inactivation kinetics were similar for all viruses when treated with disinfectants possessing a genome-damaging component (FC, (1)O2, and UV254). On the protein level, UV254 subtly damaged MS2 and fr capsid proteins, whereas GA's capsid remained intact. (1)O2 oxidized a methionine residue in MS2 but did not affect the other two viruses. In contrast, FC and ClO2 rapidly degraded the capsid proteins of all three viruses. Protein composition alone could not explain the observed degradation trends; instead, molecular dynamics simulations indicated that degradation is dictated by the solvent-accessible surface area of individual amino acids. Finally, despite the similarities of the three viruses investigated, their mode of inactivation by a single disinfectant varied. This explains why closely related viruses can exhibit drastically different inactivation kinetics.
منابع مشابه
On the cause of the tailing phenomenon during virus disinfection by chlorine dioxide.
This study investigates the mechanisms underlying the deviation from Chick-Watson kinetics, namely a tailing curve, during the disinfection of viruses by chlorine dioxide (ClO2). Tailing has been previously reported, but is typically attributed to the decay in disinfectant concentration. Herein, it is shown that tailing occurs even at constant ClO2 concentrations. Four working hypothesis to exp...
متن کاملNumerical Modelling of Porous Radiant Burners Using Full and Reduced Kinetics Mechanisms
The present paper compares full kinetics mechanisms in numerical modelling of porous radiant burners (PRB), with their reduced forms. The two most frequently used mechanisms of methane combustion (GRI3.0 and Miller) were selected and their effects were examined on temperature, species concentration, burning speed, and pollutant emission. While the findings of numerical simulation of PRB sho...
متن کاملMechanisms of human adenovirus inactivation by sunlight and UVC light as examined by quantitative PCR and quantitative proteomics.
Human adenoviruses (HAdV) are important pathogens in both industrialized and developing nations. HAdV has been shown to be relatively resistant to monochromatic UVC light. Polychromatic UVC light, in contrast, is a more effective means of disinfection, presumably due to the involvement of viral proteins in the inactivation mechanism. Solar disinfection of HAdV, finally, is only poorly understoo...
متن کاملRisk of Hepatitis C Virus transmission Following Upper Gastrointestinal Endoscopy
Background: Hepatitis C virus infection (HCV) is a main health problem in our country. It is thought that the transmission of hepatitis C virus (HCV) through the endoscopic procedures is a rare event. The aim of this study was to evaluate the risk of conventional disinfection in the transmission of HCV. Materials and methods: A prospective study, comprising 456 consecutive upper gastrointestin...
متن کاملChlorine disinfection of produce to inactivate hepatitis A virus and coliphage MS2.
Disinfection of produce is principally used to inactivate spoilage microbes and may also reduce the risk of consumer exposure to enteric pathogens. However, the rate and extent of enteric virus inactivation by free chlorine on produce has not been adequately characterized. Experiments were performed to determine the kinetics of free chlorine inactivation of hepatitis A virus (HAV) and the indic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 79 11 شماره
صفحات -
تاریخ انتشار 2013